Regularizers
- class tf_keras_vis.activation_maximization.regularizers.Norm(weight=10., p=2, name='Norm')[source]
Bases:
Regularizer
A regularizer that introduces Norm.
- Parameters:
weight – This weight will be apply to TotalVariation values. Defaults to 10.
p – Order of the norm. Defaults to 2.
name – Instance name. Defaults to ‘Norm’. Defaults to ‘Norm’.
- class tf_keras_vis.activation_maximization.regularizers.Regularizer(name)[source]
Bases:
ABC
Abstract class for defining a regularizer.
- Parameters:
name – Instance name.
- abstract __call__(input_value)[source]
Implement regularization.
- Parameters:
input_value – A tf.Tensor that indicates the value to input to the model.
- Returns:
Regularization value with respect to the input value.
- Return type:
tf.Tensor
- Raises:
NotImplementedError – This method must be overwritten.
- class tf_keras_vis.activation_maximization.regularizers.TotalVariation2D(weight=10.0, name='TotalVariation2D')[source]
Bases:
Regularizer
A regularizer that introduces Total Variation.
- Parameters:
weight – This value will be apply to TotalVariation values. Defaults to 10.0.
name – Instance name. Defaults to ‘TotalVariation2D’.